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Low-loss dielectrics are important technologically as insulators but there is little
understanding of the physical causes of this property and even their spectral response is
not well documented—this study has revealed a number of different types of behaviour
which do not appear to have been recognised previously. Most low-loss materials show a
“flat”, nearly frequency-independent loss, but while some follow the ”universal” fractional
power law of frequency dependence which is widely applicable to more lossy materials,
some are very different and require a fresh approach to their interpretation. It is pointed out
that low-loss behaviour is not necessarily connected with the absence of impurity dipoles
and the recently introduced concept of dipolar screening may explain low-loss behaviour in
impure materials. The universal response is shown to be only one of several forms of
dielectric behaviour and examples are given of possible alternative forms which may
explain the apparent incompatibility of some experimental data with Kramers-Kronig
relations. C© 1999 Kluwer Academic Publishers

1. Introduction
Low-loss materials play an important role in technology
and yet the understanding of what conditions have to
be satisfied to obtain them and what mechanisms dom-
inate their response is far from complete. A simplistic
approach would demand the lowest possible concen-
tration of dipoles and charge carriers, and in the latter,
the lowest possible mobility. However, it is a fact that
most technically important insulating materials are far
from very pure and often contain deliberate or acci-
dental admixtures of substances which are necessary in
their processing.

Broadly speaking, it is possible to distinguish two
classes of low-loss materials:

(a) polymers in which the dielectrically active spe-
cies are dipoles while ionic and electronic carriers have
very low mobilities and

(b) inorganic ceramic and similar materials in which
dipolar contributions are probably negligible while typ-
ically electronic charge carriers may have a relatively
high mobility.

In this paper we propose to examine the spectra of both
these types in order to see what conclusions may be
drawn from them. A discussion of the underlying inter-
pretation will also be given.

It is convenient to begin the present enquiry from the
standpoint of the “universal” formalism [1, 2] accord-
ing to which the real and imaginary components of the
complex susceptibility

χ̃ (ω) = [ε̃(ω)− ε∞]/ε0 (1)

are given by the fractional power-law relations

χ ′(ω) = tan(nπ/2)χ ′′(ω) ∝ ωn− 1 (2)

Hereε0= 8.845× 10−12 F/m is the permittivity of free
space,ε∞ is the high-frequency limit ofε′ beyond the
range in which appreciable losses occur andω= 2π f
is the angular frequency,f is the circular frequency
and the exponentn falls in the range (0, 1). An immedi-
ate consequence of Equation 2 is the independence of
frequency of the ratio

χ ′′(ω)/χ ′(ω) = cot(nπ/2) (3)

which implies that for low-loss materials we require that
n→ 1. It should be noted that the technically important
loss parameter

tanδ(ω) = ε′′(ω)/ε′(ω) = χ ′′(ω)/[χ ′(ω)+ (ε∞/ε0)]

(4)

differs in its frequency dependence from the lossχ ′′(ω).
In the case of very low loss systems, whereχ ′(ω)¿
(ε∞/ε0), the frequency dependences ofχ ′′(ω) and of
tanδ(ω) are practically identical and the two differ only
by a numerical factor. Several examples of low-loss
behaviour are quoted in Ref. [2].

2. The significance of ε∞
All dielectrics must have the low-frequency limit of
permittivity greater than the free space permittivity,
ε(0)>ε0 and the difference between the two,ε(0)/
ε0− 1=χ (0) is equal to the integrated loss over the
entire logarithmic frequency range [1]:

χ (0)= 2

π

∫ ∞
−∞

χ ′′(ω) d(logω) (5)
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which states that any increment ofχ (0) must be “paid
for” by a finite loss somewhere in the frequency range.
A very important mechanism of this is the inevitable
loss arising from the lattice absorption bands in the vis-
ible and the UV regions of the spectrum, compared with
which the lower frequency dielectric losses may be rel-
atively trivial. Any loss processes occurring below the
GHz region, say, cannot be associated with the lattice
process and the corresponding permittivity at the top of
this range,ε∞1, must necessarily be significantly higher
thanε0.

This is illustrated schematically in Fig. 1, where the
loss consists of two processes, each characterised by
its own frequency dependence. Now if an empirical
relation such as that given by Equation 2 is found to
apply to the susceptibility of, for example the low-
frequency process in Fig. 1, it would be unrealistic to
expect that it should also apply to some very differ-
ent process such as the high-frequency one. Thus, one
would expect Equation 2 to apply to thesusceptibility
of each separate process, regardless of what happens
at higher frequencies. This is shown schematically in
Fig. 2 where the assumed power law relation has an
exponent−0.02 for which the ratio (3) is 0.0314.

Figure 1 A schematic representation of the relationship between loss
processesε′′(ω), shown by continuous lines, and the permittivityε′(ω)
shown by the dashed line. The low-frequency process “A” is followed
at much higher frequencies by a strong process “B”, such as lattice
absorption and each of these has its characteristic frequency dependence.
In the frequency range where the losses are negligible,ε′(ω) tends to
a constant valueε∞1, while the ultimate valueε∞ beyond the lattice
absorption lies lower.

Figure 2 The idealised frequency dependence ofC′(ω) for a capacitor consisting of a “universal” elementX′(ω)= 3.18ω−0.02, for which the ratio
Equation 3 is 0.031, in parallel withC∞= 3 (the numbers are purely arbitrary). The real part of the susceptibilityX′(ω) is given by the sloping line and
its “ghost” is shown next toC′(ω) to stress the growing deviation of the latter as the importance ofC∞ increases with fallingX′(ω). The loss component
is plotted as 10X′′(ω) to increase the resolution of the plot. To test the KK compatibility of the susceptibility one has to plotX′(ω)=C′(ω)−C∞
together withX′′(ω) and check the consistency of the slope and the ratio (3).

Most low-loss materials are characterised by relative-
ly “flat” frequency dependence, which in a sense is
a logical necessity since any other dependence would
necessarily be lossy. We have pointed out [2] that a flat
loss is consistent with a constant energy loss per rever-
sal of everymicroscopicorientation, regardless of the
frequency of these reversals. This constant loss appears
to be a ubiquitous phenomenon since it is found as a
limiting condition in all low loss systems and a discus-
sion of this broad question will be given later in the
present paper.

3. Experimental data
There are many examples of low-loss behaviour which
follow the “universal” law, that is one for which it
is possible to find a value ofε∞ such that the result-
ing susceptibility obeys the universal relation, possibly
with some additional features. This is well illustrated in
Fig. 3 which refers to pure polyethylene (PE), PE with
12% C and PE with 17.5% C [3]. The values ofC∞ are
chosen so that the plots ofC′(ω)−C∞ and ofC′′(ω)
are parallel lines in the logarithmic presentation and the
values of tanδ are shown in Table I. The general con-
clusion from these data is that the universal fractional
power law of frequency dependence ofχ ′(ω) andχ ′′(ω)
is obeyed in all three cases, with the surprising result
that the exponent 1− n is higher for the pure PE than
for PE with C.

Fig. 4 shows the response of PVDFα [4] at two tem-
peratures of 103 and 163 K, where simple universal
behaviour is seen after subtraction ofC∞ and correc-
tion for some series resistance. At higher temperatures
the behaviour is complicated by the presence of some
loss peaks.

In somelow losssystems we find a very different type
of behaviour, whereC′ does not admit of any meaning-
ful substraction ofC∞ and there are no signs of any
power-law relationship for eitherχ ′(ω) or χ ′′(ω).

Our first example of this shown in Fig. 5 concerns
a sample consisting of 55% of graphite suspension in
45% of its mechanical isomorph BN, being subjected
to variable pressure giving variable thickness and re-
sulting in variable inter-particle spacings, all below
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TABLE I Summary of experimental data on “flat” loss materials

Material Reference Frequency dependence tanδ, mrad Comments

Polyethylene Fig. 3 Universal Excellent fit over 8–10 decades of
+ graphite 0% graphite 1− n= 0.10 ≈1 frequency, Equation 2 fit with

12% 0.04 ≈4 regular dependence on graphite
17.5 0.04 ≈20 content

PVDFα Fig. 4 Universal Good fit over 8 decades few
1− n= 0.060 @ 103 K 6 complicating features

0.063 @ 163 K 20
45% BN+ 55% Fig. 5 No particular trend 0.8–3 Variable pressure gives variable

graphite difficult to subtract thickness with a slight effect on
ε∞ tanδ

CaTiO3:Al Fig. 6 Power law onε′(ω) with 0.5–1 No power law inε′′(ω), slope zero or
1− n= 0.00035 to positive, but Equation 3 obeyed
0.00060

PSTZ Fig. 7 Bothε′(ω) andε′′(ω) 20–40 No subtraction ofε∞ possible
a) T < Tc flat
b) T > Tc ε′(ω) practically flat 6–17 Some variation inε′′(ω)

over 6 decades
PST Fig. 8 ε′(ω) andε′′(ω) flat 2–3 No subtraction ofε∞ from ε′(ω)

over 5 decades possible
Pure polyethylene Fig. 9 Universal with 0.1–0.3 Subtraction ofε∞ gives power

1− n= 0.043 for laws over 10 decades of frequency
ε′(ω) andε′′(ω) but not the corresponding ratio (2)

Al2O3/Co Fig. 4.2 of [2] No discernible trend 4–6 No data available for subtraction
in ε′′(ω) of ε∞ from ε′(ω)

Polystyrol Fig. 4.8 of [2] Flat over 7 decades 0.1 No data available for subtraction of
ε∞ from ε′(ω)

Vinoflex Fig. 4.8 of [2] Variation by a factor 10–20 No data available for subtraction of
of 2 over 6 decades ε∞ from ε′(ω)

Polypropylenes Fig. 4.3 of [2] Variation by a factor 0.05–0.2 No data available for subtraction of
of ≈2 over 6 decades ε∞ from ε′(ω)

Figure 3 The spectra of polyethylene with variable admixtures of graphite, plotted asχ ′(ω) andχ ′′(ω) with the values ofε∞ indicated. The respective
C′, C′′ and tanδ data are shown in Table I. Values of tanδ @ 1 Hz: 0.0015 in pure PE, 0.005 at 12% C and 0.02 at 17.5% C From [3].

percolation level [5]. Here the mean tanδ is of the
order of 0.3 to 1 mrad and there does not appear
to exist any sensible power law relationship between
C′(ω) andC′′(ω) and the data are not amenable to any

“conventional” analysis of the type used in deriving the
universal relations in similar circumstances [6, 7].

Fig. 6 gives the data for single crystalline CaTiO3:
30%Al from Lim et al. [8] for a range of temperatures
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Figure 4 The spectra of PVDFα at two temperatures of 163 and 103 K, with correction for a series resistance and with a valueC∞= 3.9× 10−10

subtracted. The values of tanδ are indicated. Menegotto, unpublished data.

Figure 5 The spectra of C-BN powder mixtures under conditions below percolation with variable compression to give a variable sample thickness
indicated by numbers and therefore variable inter-particle distances. These show an almost “flat” frequency dependence over nine orders of magnitude
of frequency. tanδ values of the order of 3× 10−4 are typical and we note that there is no trace of a fractional power law in theC′′(ω) plots, with a
predominance ofpositiveslopes. From Mclachlan [5].

where C′(ω) in (a) follows an excellent power law
over four decades of frequency, with the limiting slopes
1− n= 0.000325 and 0.000625 indicated on the plot.
In diagram (b)C′′(ω) follows a rather complex pat-
tern with the low-frequency slopes ranging from posi-
tive to negative and a flattening at higher frequencies.
The remarkable feature is that, although there is no
sign of a universal relationship, applying the multiplier
cot(nπ/2) to the slopes shown in (a) one obtains the po-
sitions marked with the chain-dotted lines in (b), which
show clearly that the ratioC′′(ω)/C′(ω) obeys the clas-
sical relation, even though the power-law relations do
not apply toC′′(ω) but toχ ′′(ω).

A different example is shown in Fig. 7 referring
to a ferroelectric ceramic of composition Pb2Sc0.875
Ta0.875Zr0.125O6 below and above the Curie tempera-
ture ofTc= 68◦C [9]. BelowTc bothC′(ω) andC′′(ω)

are virtually flat over five to six decades of frequency
and the tanδ is remarkably high, 0.02–0.04 which, on
the face of it, appears incompatible with the virtually
zero slope. A meaningful subtraction of a value ofC∞
likewise appears difficult since this would make the ra-
tioχ ′′(ω)/χ ′(ω) even larger. There is no question in this
instance of a construction like that in Fig. 6, showing at
least an apparent agreement with the cot(nπ/2) value,
since no value ofn can be derived. AboveTc in the para-
electric state in diagram (b), tanδ is significantly lower,
but it is likewise impossible to substract a meaningful
value ofC∞. The rise ofC′′(ω) at high frequencies,
which could be attributed to series resistance, may not
be due to this cause, since the difference between (a)
and (b) would be difficult to justify in what is the same
sample. Note the different behaviour below and above
the Curie temperature.
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Figure 6 The spectra of CaTiO3:30%Al showing in (a)C′(ω) without any subtraction ofC∞ and in (b)C′′(ω) corrected for series resistance, over
a range of temperatures in K.C′(ω) follow good power laws with the limiting slopes being indicated,C′′(ω) have slopes at low frequencies ranging
from positive to negative, with steep rise at higher frequencies. The latter could be the consequence of a finite series resistance. The arrows in (b)
correspond to K-K compatible positions to the respective slopes in (a). From Limet al. [8].

Fig. 8 shows the data for a ferroelectric sample of
composition Pb2ScTaO6 in which it is not possible to
subtract any value ofC∞ and, in any case, the loga-
rithmic slopes ofC′′(ω) range from positive to negative
values.

Our last example in Fig. 9 shows the data for poly-
ethylene kindly supplied by D. S. McLachlan,
where the tanδ falls between 0.1 and 0.3 mrad and
there are clearly discernible trends toC′′(ω) andC′(ω)
− 9.50× 10−10 which are both proportional toω−0.043.
However, the similarity of power law exponents is not
compatible with the ratio of these quantities, showing
clearly that the “universal” law is not applicable in its
classical form.

4. Summary of response types
We conclude that there exist several types of low-loss
responses, among which we may distinguish the follow-
ing, in progressive order of complication:

(a) The “classical” type which obeys the universal
relations with clearly identifiable exponentn, and with
corresponding ratioχ ′′(ω)/χ ′(ω) and also with an iden-
tifiable value ofε∞;

(b) The response in whichε′(ω) has an identifiable
slope although there is no means of subtractingε∞ and
the ratioε′′(ω)/ε′(ω) is consistent with that slope, even
though the frequency dependence ofε′′(ω) does not
agree with that ofε′(ω);

(c) The response consisting of essentially “flat” loss
which may, nevertheless, correspond to even relatively
large values ofε′′(ω)/ε′(ω), without any means of as-
sociating an exponent with it, and therefore there is no
ratioχ ′′(ω)/χ ′(ω) to be expected from these data;

(d) the power law is clearly present in bothχ ′′(ω) and
χ ′(ω) but their ratio is not consistent with that power
law.

On the face of it, cases (b), (c) and (d) are incompatible
with the traditional “universal” approach to dielectric
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Figure 7 The spectra ofC′(ω) andC′′(ω) for a ferroelectric ceramic of composition Pb2Sc0.875Ta0.875Zr0.125 below the Curie temperature of 68◦C
in (a) and above the Curie temperature in (b), showing a remarkably flatC′(ω) from which it is not possible to subtractC∞, broadly flatC′′(ω) and
relatively high values of tanδ. The slopes ofC′′(ω) in (b) range from positive to negative regardless of the slope of the real part. From [9].

theory and we shall propose fresh approaches which
may be capable of explaining these discrepancies.

5. Theoretical interpretation
Our next objective is to provide an understanding of
the widespread existence of low-loss dielectric materi-
als and to explain the “flat” or nearly frequency-inde-
pendent character of these low loss spectra. A discus-
sion is also given of the significance of deviations from
the universal fractional power-law frequency depen-
dence, particularly on the basis of the data presented
in this paper. On this basis we shall formulate the fol-
lowing four questions relating to this subject—the main
problem is that no-one seems to have posed them so
far:

1. What material conditions must be satisfied for the
low-loss property to be observed;

2. What characteristic forms of frequency-domain
response are found experimentally in low-loss mate-
rials;

3. Can these forms be interpreted within the frame-
work of the “universal” dielectric response or is it nec-
essary to go beyond this framework;

4. What are the likely physical interpretations of this
type of behaviour.

Dipolar losses depend on the ability of dipoles to re-
orientate themselves in external fields and this is de-
termined by the magnitude of energy barriers prevent-
ing such orientations. In materials in which the dipoles
form part of the structure of the material, such as in po-
lar polymers, the steric forces preventing re-orientation
may be very high, and the same may be true of rigid
structures such as glasses. On the other hand, the sit-
uations of particular interest in the present paper are
where the dipoles are extrinsic to the structure, for ex-
ample impurity dipoles in most materials, when such
constraints may not apply to the same extent.

The term dipole is to be understood to comprise
ionic dipolesconstituted by charged localised ions with
their countervailing opposite charges constrained to
hop around them, such as aliovalent substitutional im-
purities in crystalline materials or interstitial ions.

5.1. Review of experimental data
We begin with a review of some experimental data
presented in Table I which sums up the principal
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Figure 8 The spectrum of a ferroelectric ceramic of composition Pb2ScTaO6 which does not follow any “universal” tendency and in which it is not
possible to subtract a sensible value ofC∞ at any temperature.

Figure 9 The loss data for polyethylene showing a different deviation from the “universal” trend, in that the subtraction of a value ofC∞= 9.5× 10−10

F give parallel logarithmicC′(ω) andC′′(ω) plots with a slope−0.043 over ten decades of frequency, but with a ratio which some 20 times larger
than the KK compatible value shown by the dotted line. The values of tanδ cover the range 1–3× 10−4 and the loss goes asC′′(ω) ∝ ω−0.043 shown
by the dotted line. Data kindly supplied by D. C. McLachlan.

characteristics and the orders of magnitude involved.
We note that the range of tanδ values for materials
showing “flat” loss ranges from less than 0.1 to more
than 40 mrad, in other words, the flatness of losses is

not in any way confined to very low loss materials but
is found regardless of the value of tanδ.

Likewise the spectral shape is independent of the
level of loss—we see perfect universal law in PE
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with various admixtures—including zero—of graphite,
while a different sample of pure PE gives the same
power laws forχ ′′(ω) andχ ′(ω) but not a consistent
ratio χ ′′(ω)/χ ′(ω). Several of the examples show no
power laws for bothε′(ω) andε′′(ω) while some show
power laws forε′(ω) but not forε′′(ω) while still retain-
ing an approximate fit ofε′′(ω)/ε′(ω).

The conclusion from this is that “flatness” and loss
level are not linked directly, at least not for tanδ≤
30 mrad. For higher values of tanδ the variation of
ε′(ω) andε′′(ω) is becoming pronounced, as would be
expected from their KK compatibility. It is also evident
that the universal law of polarisation is only one limiting
form of behaviour and that other models are acceptable.
We shall attempt to outline some possible alternative so-
lutions, although the full clarification of this complex
picture would require further work, mainly because this
type of behaviour had not been properly recognised be-
fore.

5.2. The “universal” law
The complex dielectric susceptibility of many low-loss
dielectrics follows a limiting form of the “universal”
relaxation law given by Equation 2 with its KK conse-
quence of Equation 3. The case of low-loss dielectrics
corresponds to the limitn→ 1, where the ratio (2) tends
to zero and many examples of such behaviour have been
found [2, 3]. It is important to note that theempirically
observedpower law frequency dependence does not
in any wayexplain the physical mechanism underly-
ing these processes, it merely states that most materials
happen to follow this law.

However, we have shown earlier in this paper that
many low-loss materials deviate significantly from the
universal relation, either by not following the fractional
power law at all, or when following it, failing to main-
tain the KK compatible ratio (2). Some even show that
a different ratio obeys the slope relation

ε′′(ω)/ε′(ω) = cot(nπ/2) (6)

This relationship is very surprising, since its literal
interpretation would require that the same fractional
power law of frequency dependence should be applica-
ble all the way to the optical region of the spectrum and
beyond, since no subtraction ofε∞ is involved. In some
examples quoted by us relation (3) applies to the slope
n of ε′(ω) but the slope ofε′′(ω) may be completely
incompatible with that ofε′(ω).

We shall propose some alternative approaches which
may help to remove the apparent breakdown of KK
relations.

5.3. Earlier theoretical treatments
There exist many theoretical treatments of the fre-
quency dependence of dielectric susceptibility, some
based on quantum-mechanical analysis of vibrations
in disordered systems [10–12], others on a variety of
fractal arguments [13], on dynamics of hopping charge
carriers [14–18], on stochastic arguments [19–21] and

on a logarithmic hierarchy of relaxation kinetics [22],
to name but a few. All these treatments relate to the
time-dependence of the relxation process under speci-
fied assumptions, but they are not very helpful in defin-
ing the criteria for low loss response. Only the quantum
mechanical vibration theories [10, 12] and the stochas-
tic analysis give the “universal” fractional power law of
Equation 2, while the others, most of which are specif-
ically applicable to relatively conducting, i.e. high loss
systems, lead to various forms of logarithmic laws. It
is relevant to point out that, while derivingχ ′′(ω) or
σ ′(ω)=ωχ ′′(ω), most of these treatments do not trou-
ble to derive explicity the functional form ofε′(ω),
so that it is not easy to obtain a closed-form expres-
sion for the ratioχ ′′(ω)/χ ′(ω), but it is evident that
the form given by Equation 2 which is characteristic
of the “universal” law represents but one special case
of all possible forms, even though the most frequently
encountered experimentally. Therefore one should not
be discouraged from pursuing other possible models as
examples of what is possible, without immediately be-
ing concerned with the particular physical model which
may give rise to this behaviour.

The analysis in Ref. [10] comes to conclusions which
are moderately close to those advanced in the present
paper, envisaging an effective reduction of the number
of available dipoles in the limit ofn→ 1, even though
it arrives there on a rather different path. The fact that
there exist several analogies between these treatments
strengthens our confidence in the validity of these argu-
ments. In particular, Ref. [10] postulates a very general
model, while the present analysis provides a more spe-
cific example. There are also some similarities with an
earlier analysis by Bozdemir [23, 24].

5.3.1. Physical basis of low loss
There does not appear to exist a physically satisfactory
rationale for the existence of low dielectric losses and
simple “common sense” arguments that what is needed
is a low density of polarisable species do not provide
satisfactory answers, since low-loss materials are not
necessarily very “pure”. As a result of this we have
suggested that the key to the understanding of low-loss
behaviour lies in dipolar screening [2, 25] which leads
to interactions between dipoles in materials with suffi-
ciently low dipole densities. Briefly stated, the propo-
sition is that electrostatic interactions between dipoles
even at large distances from one another “lock” these
dipoles so that their response to external alternating
fields is weakened.

This dipolar screening is closely analogous to the
well known phenomenon of screening bycharged par-
ticles which leads to the concept of Debye screening
radiusλD and the related notion of the numberν of par-
ticles in a Debye sphere. Classical analysis leads to the
conclusion thatν increaseswith decreasingdensityn
of particles, going asn−1/2-dense plasmas screen par-
ticles very effectively so thatν <1, no particle “sees”
any of the others. On the contrary, in dilute plasmas
Coulombic interaction extends further and many parti-
cles are found in the field of any one of them.
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Figure 10 The critical densityN1 given by Equation 7, below which
interactions between dipoles become strong and above which they are
weak. The densityN1 is shown as function of the product of the temper-
atureT and of the relative permittivityεr, with the “length”`nm of the
dipole in nanometres as parameter. Marked on the density axis are den-
sities as fractions of the “molecular” density 3× 1028 m−3. ForN¿ N1

dipolar fields interact strongly, individual dipoles are unlikely to follow
external fields, thereby reducing their influence on polarisation and giv-
ing strongly interactive “flat” spectra. ForNÀ N1 individual dipoles do
not “see” their nearest neighbours and each dipole behaves independently
of all the others, giving Debye-like spectra. Note that`nm≈ 0.1–0.3 is
typical of most molecular dipoles,̀nm= 1 relates to larger molecules
and`nm= 0.03 is typical of induced atomic and molecular dipoles.

The analysis in Ref. [25] shows that the situation with
dipoles is similar but much more drastic, in that there
exists a critical densityN1 of dipoles given by

N1 = 3εkT

µ2 ln 2
= 2.03× 1022εrT

`2
nm

(7)

where` is the dipole “length” defined by the magni-
tude of the dipole momentµ= `q, whereq is the dipo-
lar charge and̀nm is the value of̀ in nanometres. As
the dipole density falls belowN1, the number of dipoles
within the field of any one dipole increases almost expo-
nentially, so that any dipolar system of densityN< N1
is dominated by strong interactions (see Fig. 10). This
relation is shown in Fig. 10 as a logarithmic plot of
N1 against the product of relative permittivityεr and
temperatureT , with `nm as parameter.

The effect of this is to delay the response of dipoles
to external fields, at least on a sufficiently short time
scale, while they remain “trapped” in the fields of their
neighbours. Given sufficiently long time of interaction
with the field, an equilibrium will always be reached
eventually, but at shorter times and higher frequencies
the effective density of dipolesis bound to be much
smaller than their actual density.

Taking typical valuesεr= 3 and `= 0.1 nm and
T = 300 K, we find N1≈ 2× 1027m−3 which corre-

sponds to nearly 1% of molecular density, and the dipole
densityN needs only be smaller than this rather high
density in order for strong interactions to dominate.

According to this argument, a dipolar system does not
need to be “ultra-pure” in order to have low losses, it is
sufficient for the dipole density to fall below the critical
densityN1 appropriate tò , ε andT , for the effective
number of dipoles to be reduced by the interaction. It
is worth noting that in this context the para- or ferro-
electric nature of the material itself does not play any
major role, since the dipoles that we are considering are
impuritydipoles embedded in the lattice of the material,
and not theintrinsic dipoles of a ferroelectric material.

5.4. A particular model of flat loss
In the past we have tended to regard the flat loss as
the limiting case of the universal power law relation
with the exponentn→ 1, which would lead to the log-
ical conclusion thatχ ′′(ω)/χ ′(ω)→ 0. However, there
is no reason to regard this as the only possible situa-
tion since all the alternative treatments mentioned in
Refs. [14–18] likewise do not follow the universal law
and do not exhibit the relation (2). The latter has the
unique physical significance that the loss is directly re-
lated to polarisation regardless of frequency, which may
be interpreted as signifying a constant loss per reversal
of microscopic polarisation [2, 26].

Consider a system which, due to specific physical
conditions, has a genuinely “flat” loss in a certain spec-
tral range. It cannot be truly flat in the entire range
[0,∞], since it has to satisfy the conditionsχ ′′(0)= 0
and the finite integral given by Equation 5 (see Fig. 11).

We shall derive the functional form ofχ ′(ω) corre-
sponding to constantχ ′′(ω)= A over a frequency range
which we shall assume to be sufficiently large to justify
calculatingχ ′(ω) from this law and ignoring regions at
lower and higher frequencies.

The Kramers-Kronig expression forχ ′(ω) in terms
of χ ′′(ω) is from Ref. [1]:

χ ′(ω) = 2

π

∫ ∞
0

x

x2−ω2
dx≈ 2A

π

∫ Ä

0

x

x2−ω2
dx

(8)

where we have replaced the upper limit of integration
with Ä assumed to be the limit to which the constant
loss is valid. The integral in Equation 8 is to be taken
in the sense of Cauchy’s principal value, ignoring the
imaginary contribution arising from integration over
the pole atx=ω. The integral is evaluated as the limit
for ω−→ω andω+→ω of

∫ ∞
0

x

x2−ω2
dx= 1

2
ln(ω2− x2)|ω−0 +

1

2
ln(x2−ω2)|Äω+

= lnÄ− lnω (9)

so that

χ ′(ω)≈ 2A

π
(lnÄ− lnω) (10)
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Figure 11 A schematic representation of a dielectric spectrum with a “flat” loss range covering several decades of frequency up toÄ. χ ′′(ω) must
go to zero at very low and very high frequencies. The correspondingχ ′(ω) remains relatively shallow in the chosen range but its relation toχ ′′(ω)
depends on boundary conditions which are not readily ascertainable.

Figure 12 The calculated frequency dependence of the ratioχ ′(ω)/χ ′′(ω) with an assumed constant value ofχ ′′(ω), plotted linearly in (a) and
logarithmically in (b) against the logarithm of the ratioω/Ä. The tags in (b) give the values of the logarithmic slope at the points indicated.

This may be expressed as the ratio

χ ′(ω)/χ ′′(ω) = 2

π
(lnÄ− lnω)≈ lnÄ− lnω

= ln(Ä/ω) (11)

and this is shown as a plot in Fig. 12a. Sinceχ ′′(ω) is
assumed to be constant, the plot also gives the scaled
graph ofχ ′(ω) showing its functional form to be very
flat or flat, depending on the value of the ratio in
Equation 12. The logarithmic plot in Fig. 12b is more
informative here, since it corresponds to the customary
form of plotting the experimental data.

The value of the ratioχ ′(ω)/χ ′′(ω)→ 1 asω→Ä,
in other words as the frequency approaches the limit
of applicability of the flat loss approximation, which
is not surprising. As the frequency moves away from
the limiting valueÄ so the ratio (12) increases slowly
andχ ′(ω) becomes progressively more constant. The

values of the logarithmic slope at various points are
indicated in diagram (b).

Taking limited ranges of frequency of, say four to
six decades, it should be possible to obtain reasonably
straight log-log plots with variable ratiosχ ′(ω)/χ ′′(ω).
It is necessary to bear in mind that the experimentally
important ratio is theε′(ω)/ε′′(ω) since we do not know
a priori the values ofε∞. The effect of this is seen in
Fig. 13 as a decrease of the dispersion ofε′(ω)/ε′′(ω)
in comparison to that ofχ ′(ω)/χ ′′(ω).

It is clear that the proposed “flat loss” form with its
KK-compatibleε′(ω) represents a much better approxi-
mation to the experimentally observed forms of dielec-
tric response such as in Fig. 7 and possibly also in Fig. 8,
and in many other sets of data, than the “universal” frac-
tional power law which is seen, for example, in Fig. 3.
The data of Fig. 6 could likewise fit into this picture but
the extremely low value of the ratioε′′(ω)/ε′(ω) makes
it unlikely to be the correct choice. Finally, it is worth
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Figure 13 The graph ofε′(ω)/ε′′(ω) which differs from that ofχ ′(ω)/χ ′′(ω) shown in Fig. 12 by the addition of various values ofε∞/ε′′ as indicated
by tags. The sharp kinks in the curves are due to the arbitrary truncation at zero of the data forχ ′(ω)/χ ′′(ω) which rapidly fall to−∞ for values of
ω/Ä where they are no longer valid. The important point is the gradual reduction of the dispersion ofε′(ω)/ε′′(ω) with rising ε∞.

stressing that the data of Fig. 5 defy any simple form
of classification.

It is also worth noting the remarkable behaviour
shown in Fig. 9, where the fractional power law is
obeyed by bothχ ′(ω) andχ ′′(ω) but the correspond-
ing relation (2) is not obeyed, once again showing that
there is more to this than meets the eye. It appears quite
generally, therefore, that low- and very low-loss materi-
als represent a special category of dielectric behaviour
which does not fit entirely into the “universal” pattern.
A full theoretical significance of this observation has
yet to be developed.

The principal purpose of showing the example of
constant loss is to demonstrate the potential of this line
of approach—any number of possible frequency de-
pendences could be tried and they may lead to promis-
ing alternatives to the universal form which manifestly
does not fit the requirements of many low-loss mate-
rials. There would then remain the task of finding the
physical framework in which the promising spectral
dependence could be accommodated.

There remains a further possible approach to
the interpretation of non-universal processes—termed
“trans-universal” [2, 9], where the equivalent circuit of
the model system contains an additional universal ca-
pacitor in series with the universal fractional power law
element. It is not clear what the physical significance
of this process could be and more analysis is needed to
elucidate this aspect.

5.5. “Flatness” of low loss
We now turn to the other property of low-loss di-
electrics—the “flatness” of theirε′(ω) andε′′(ω) spec-
tra, ascertained experimentally over five, seven or more
decades of frequency, notwithstanding the presence in
some cases ofsmalldeviations from almost constant re-
sponse in the logε− log ω representation. Typically,
logε′′(ω) plots, many of which are quoted in Ref. [2],
show more variation than logε′(ω) plots and may fluc-
tuate over 1/5th to 1/3rd decade in five or six decades
of frequency. These small deviations can be attributed

to weak dipolar processes which may be present and
which in no way invalidate the concept of the flat loss.

Our experience shows that residual losses remain-
ing after elimination of more dominant loss processes
[6, 7], such as large dipolar peaks, low-frequency-
dispersion (LFD) [2] or direct current conduction, give
a flat distribution over appreciable ranges of frequen-
cies. This irreducible flat loss background falling well
above the detection limit seems to be a characteristic of
all solid dielectrics.

It is important to stress that there isno necessary rea-
sonwhy the universal relation given by Equations 2 and
3 should apply to all low-loss dielectrics. Apart from
the fact that most dielectrics of any level of loss seem to
obey this relation, it is a matter of empirical evidence
that some low- and very-low-loss materials exhibit this
type of behaviour to a large extent. Equally, however,
there is convincing evidence of deviations from the uni-
versal relation, manifesting itself primarily by the in-
applicability of the same fractional power-law relations
to bothχ ′(ω) andχ ′′(ω), with consequential inapplica-
bility of the ratio of Equation 3.

To the extent to which the universal relation is seen
to be applicable, the flatness of low-loss response is
an evident and inescapable consequence of Kramers-
Kronig relations: if the loss is low, bothχ ′(ω) andχ ′′(ω)
must be almost flat, corresponding ton→ 1, and in
the correct ratio. The physical causes of this flatness
are then directly linked to the fact that the universal
relation is based on the assumption that every reversal
of microscopic polarisation entails the same amount
of energy loss regardless of the frequency of reversals.
If very few reversals take place because of long-range
interactions and the absence of screening, the loss is
correspondingly low and flat.

Thus, the conclusion is that in the case of solid
dielectrics the inevitable limiting condition is a flat,
frequency-independent loss and permittivity, some-
thing that does not appear to arise in the case of liquids.
This phenomenon requires a fundamental explanation.

Our starting point is the inevitable consequence of
the fractional power law relation given by Equation 2,
which can be interpreted as the ratio of energy lost
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per radian to energy stored in the system [2] and this
is equivalent to the statement that the energy lost per
reversal of microscopic polarisation is independent of
frequency.

One process which could apply to low-loss systems is
some form of piezoelectric mechanism where the appli-
cation of an electric field gives rise to mechanical strain
and this in turn brings with it energy loss on reversal
of polarisation. This mechanism is very likely to oper-
ate in ferroelectrics where the piezo-electric coupling
is strong and there is good experimental evidence for it
[6] but it is possible that some form of piezoelectricity
is present even in conventional dipolar materials, since
dipolar orientations should have an effect on mechani-
cal strain [27].

No detailed work appears to have been done on this
process and yet the experimental evidence is com-
pelling to consider this or some similar loss process
as responsible for the observed behaviour of solid di-
electrics. In this connection it is particularly relevant to
note that flat loss is not seen in liquids, in which dipolar
peaks appear to decrease indefinitely with progressive
removal of dipolar species. This may be understood in
terms of the absence of electrostatic ordering in liquids.

The flatness of loss may need to be further justi-
fied in the case of materials not following the universal
relation.

6. Conclusions
We suggest that low-loss dielectrics owe their behaviour
not so much to a particularly low density of dipo-
lar species, which manifestly does not apply to many
of them, but to the effect of dipolar screening which
produces interaction between neighbouring dipoles,
thereby preventing a significant fraction of them from
following external alternating fields. The critical den-
sity for the screening effect is higher than would be
needed for a very low loss in non-interacting dipolar
systems.

Our study has revealed, we believe for the first time,
that the “universal” fractional power law which ap-
plies to a large majority of all dielectrics regardless
of their physical and chemical nature, appears not to
be equally generally applicable to low-loss materials,
with tan δ≤ 0.03, say. This suggests that in the low-
loss limit other processes take over and dominate the
behaviour. Deviations from the universal law may take
the form of failure to follow the fractional power law by
χ ′(ω) and/or byχ ′′(ω), and it may even lead to a failure
to maintain the correct ratioχ ′(ω)/χ ′′(ω) expected of
the universal law. There are also examples of the ratio
ε′(ω)/ε′′(ω) being consistent with the power law trend
of ε′(ω), the physical significance of which is not at all
clear as yet.

The “flat” spectral character which is the widely ob-
served concomitant property of low loss behaviour, is

interpreted in terms of constant loss per reversal of po-
larisation, which is independent of the frequency of re-
versals. It is suggested that one such processes may be
due to piezoelectric coupling between polarisation and
mechanical loss, but there may well be other processes.

Generally, it is evident that the response of low-loss
materials leaves a great deal of unanswered questions
which should be investigated with a corresponding in-
crease in the detailed systematic study of the experi-
mental situation.
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7. A . K . J O N S C H E R, C. L É O N and J. S A N T A M A R I A , J.

Mater. Sci. 33(18) (1998).
8. R. S. L I M , A . V . V A Y S L E Y B andA . S. N O W I C K, Appl.

Phys. A56 (1993) 8–14.
9. A . K . J O N S C H E Rand A I S H A H I S N I N , Ferroelectrics210

(1998) 67–81.
10. L . A . D I S S A D O andR. M . H I L L , Proc. Roy. Soc. Lond.A390

(1983) 131–180.
11. G. A . N I K L A S S O N, J. Appl. Phys. 62 (1987) R1–R14.
12. R. M . H I L L , L . A . D I S S A D O andR. R. N I G M A T U L L I N ,

J. Phys. C: Condensed Matter3 (1991) 9773–9790.
13. R. R. N I G M A T U L L I N , Physica Status Solidi (b)133 (1986)

425–430.
14. J. C. D Y R E, J. Appl. Phys.64 (1988) 2456–24668.
15. Idem., J. Non-Cryst. Solids135(1991) 219–226.
16. K . L . N G A I , ibid. 203(1996) 232–245.
17. M . P. J V A N S T A V E R E N, H. B. B R O M and L . J.

DE J O N G H, Physics Reports208(1991) 1–9.
18. A . H U N T, Journal of Physics-Condensed Matter2 (1990) 9055–

9063.
19. K . W E R O N, J. Phys: Condensed Matter3 (1991) 221–223.
20. Idem., ibid. 3 (1991) 9151–9162.
21. K . W E R O N andA . J U R L E W I C Z, J. Phys. A: Math. Gen.26

(1993) 395–410.
22. H. J. Q U E I S S E R, Appl. Phys. A52 (1991) 261–264.
23. S. B O Z D E M I R, Phys. Status Solid (b)103(1981) 459–470.
24. Idem., ibid. 104(1981) 37–47.
25. A . K . J O N S C H E R, J. Mater. Sci. 32 (1997) 6409–6414.
26. Idem., Appl. Phys. A56 (1993) 405–408.
27. S. H A V R I L I A K Jr., private communication.

Received 31 July 1998
and accepted 29 January 1999

3082


